TD Lois internes et structures algébriques

K11 Exercice 1 Pour $x,y\in]-1,1[$, on pose $x\oplus y=\frac{x+y}{1+xy}.$ Montrer que \oplus définit une loi interne sur]-1,1[, associative et commutative.

Groupes et sous-groupes

- OTL Exercice 2 $\operatorname{\mathscr{D}}$ Soit (G,\times) un groupe et $g\in G$. Montrer que $\varphi_g\colon G\to G$ $a\mapsto ag$ est bijective.
- **BG1** Exercice 3 \square \wedge On travaille dans le groupe $(\mathbb{Z}, +)$.
 - 1. Soit $\alpha \in \mathbb{Z}$. Montrer que $\alpha \mathbb{Z} = \{ \alpha k, k \in \mathbb{Z} \}$ est un sous-groupe de \mathbb{Z} .
 - 2. Montrer brièvement que si $H \subset (\mathbb{Z}, +)$ est un sous-groupe de \mathbb{Z} et $\alpha \in H$, alors $\alpha \mathbb{Z} \subset H$.
 - 3. On note $\mathcal H$ l'ensemble des sous-groupes de $\mathbb Z$ qui contiennent α . Montrer que $\bigcap_{H \in \mathcal H} H = \alpha \mathbb Z$
- **561 Exercice 4** Soit G un groupe, noté multiplicativement. On appelle centre de G l'ensemble $\mathcal{Z}(G) = \{x \in G \mid \forall y \in G, xy = yx\}$. Montrer que $\mathcal{Z}(G)$ est un sous-groupe de G.
- JXU Exercice 5 $\operatorname{\hspace{0.1em}/}\operatorname{Pour} \theta \in \mathbb{R}$, on note $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathcal{M}_{2}(\mathbb{R})$.
 - 1. Pour $\theta, \theta' \in \mathbb{R}$, calculer et simplifier le produit $R_{\theta}R_{\theta'}$. En déduire que R_{θ} est inversible.
 - 2. Montrer que $\mathcal{R} = \{R_{\theta}, \theta \in \mathbb{R}\}$ forme un groupe pour la multiplication matricielle.
- **К61 Exercice 6** Soit (G, \times) un groupe noté multiplicativement et $(H_n)_{n \in \mathbb{N}}$ une suite de sous-groupes de G.
 - 1. Montrer que $H = \bigcap_{n \in \mathbb{N}} H_n$ est un sous-groupe de G.
 - 2. On suppose que la suite $(H_n)_{n\in\mathbb{N}}$ est croissante pour l'inclusion, c'est-à-dire $\forall n\in\mathbb{N},\,H_n\subset H_{n+1}$.

Montrer que $H = \bigcup_{n \in \mathbb{N}} H_n$ est un sous-groupe de G.

- YMV **Exercice** 7 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique.
 - 1. Montrer que l'ensemble des périodes de f est un sous-groupe de $(\mathbb{R}, +)$.
 - 2. \bigstar Si H est un sous-groupe de $(\mathbb{R}, +)$, construire une fonction dont c'est l'ensemble des périodes

$$\textbf{OPK Exercice 8} \text{ Ping-Pong Soit } A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, X = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \ \middle| \ |x| > |y| \right\}, Y = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \ \middle| \ |y| > |x| \right\} \text{ et } E = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- 1. Montrer que, pour $k \in \mathbb{N}^*$, $A^k Y \subset X$ et que $B^k X \subset Y$.
- 2. On pose $M_1 = A$ et $M_2 = B$. Pour $\omega \in \{1, 2\}^n$, on pose $\varphi(\omega) = \prod_{k=1}^n M_{\omega_k}$. Montrer que φ est injective. Ind: Utiliser E
- 3. \bigstar Plus généralement, montrer que tout produit de n matrices valant chacune soit A, soit B, soit A^{-1} , soit B^{-1} mais sans facteurs A et A^{-1} consécutifs, ni B et B^{-1} , est différent de l'identité. On dit que le groupe engendré par A et B est libre.

Arithmétique

BSY Exercice 9 A Montrer que $7 \mid 2^{333} + 3^{333}$.

Indication: Que dire des puissances successives de 2, et 3 modulo 7?

- **XVJ Exercice 10** Soit $N = 4444^{4444}$.
 - 1. Pour $n \in \mathbb{N}^*$, on note s(n) la somme des chiffres de n. Montrer que $n \equiv s(n)[9]$.
 - 2. \bigstar On note A la somme des chiffres de N, B celle de A et C celle de B. Que vaut C?
- 520 Exercice 11 ≠ Petit théorème de Fermat
 - 1. Soit p un nombre premier et $a \in [1, p-1]$.
 - a) Montrer l'existence d'un inverse de a modulo p, c'est-à-dire d'un élément $a^{-1} \in [1, p-1]$ tel que $aa^{-1} \equiv 1[p]$.
 - b) Justifier l'existence de deux entiers distincts $k,\ell\in\mathbb{N}$ tels que $a^k\equiv a^\ell[p]$. En déduire l'existence d'un entier plus petit entier $d\in [\![1,p-1]\!]$ tel que $a^d\equiv 1[p]$ et que $\{a^k[p],\,k\in\mathbb{Z}\}=\{a^k[p],\,k\in[\![0,d-1]\!]\}$.
 - c) On définit une relation $\sim \sup \left[\!\left[1,p-1\right]\!\right]$ en posant

$$\forall x, y \in [1, p-1], \quad x \sim y \Leftrightarrow \exists k \in \mathbb{Z}, \ a^k x \equiv y[p].$$

Montrer que \sim est une relation d'équivalence.

- d) Pour $x \in [1, p-1]$, on note C_x la classe d'équivalence de x. Montrer que $|C_x| = d$.
- e) En déduire que $a^{p-1} \equiv 1[p]$.

Ind : L'ensemble des classes d'équivalences forme une partition.

- 2. \bigstar On note $\varphi(n)$ le nombre d'entiers de $[\![1,n]\!]$ qui sont premiers avec n. Énoncer un analogue du résultat précédent modulo n quelconque.
- 3. \bigstar Soit n un entier premier avec 10. Montrer qu'il existe un multiple de n qui ne s'écrit qu'avec le chiffre 1.
- C5E Exercice 12 Soit p premier impair.
 - 1. Donner une CNS sur $a \in \mathbb{Z}$ pour que $a \not\equiv -a[p]$. Justifier précisément.
 - 2. On dit que $a \in \mathbb{Z}$ est un carré modulo p si et seulement s'il existe $u \in \mathbb{Z}$ tel que $u^2 \equiv a[p]$. Justifier que si a est un carré modulo p et que $a \not\equiv 0[p]$, alors a admet exactement deux racines carrées.

3. \bigstar Soit $a \in \mathbb{Z}$ premier avec p et $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^*$ sa classe et $m = \overline{(p-1)!} \in \mathbb{Z}/p\mathbb{Z}$. En regroupant les termes x et $\frac{\overline{a}}{x}$. Montrer que

$$m = \begin{cases} -\overline{a}^{(p-1)/2} & \text{si } a \text{ est un carr\'e} \\ \overline{a}^{(p-1)/2} & \text{sinon} \end{cases}$$

4. En déduire le théorème de Fermat.

Groupes de racines n-ième

- **P11 Exercice 13** On dit que $\omega \in \mathbb{U}_n$ est une racine primitive n-ième de l'unité si ω engendre \mathbb{U}_n , c'est-à-dire si $\{\omega^k, k \in \mathbb{N}\} = \mathbb{U}_n$.
 - 1. Montrer que $\omega=e^{\frac{2ik\pi}{n}}$ est une racine primitive n-ième de l'unité si et seulement si k est premier avec n.
 - 2. Montrer que si n_1, n_2 sont premiers entre eux, le produit d'une racine primitive n_1 -ième et d'une racine primitive n_2 -ième est une racine primitive n_1n_2 -ième de l'unité.
 - 3. \bigstar Soit H un sous-groupe de \mathbb{U}_n .
 - a) Montrer que si H contient une racine primitive n_1 -ième et une racine primitive n_2 -ième, H contient $\mathbb{U}_{ppcm(n_1,n_2)}$.
 - b) Montrer qu'il existe m tel que $H = \mathbb{U}_m$.
- **6F1 Exercice 14** \bigstar Soit p un nombre premier, et $G = \bigcup_{n \in \mathbb{N}} \mathbb{U}_{p^n}$.
 - 1. Montrer que G est sous-groupe de (\mathbb{C}^*, \times) .
 - 2. Soit H un sous-groupe propre de G, c'est-à-dire un sous-groupe différent de G. Montrer qu'il existe $n \in \mathbb{N}$ tel que $H = \mathbb{U}_{p^n}$. Indication : Considérer un élément $z_0 \in G \setminus H$. En déduire qu'il existe $n_0 \in \mathbb{N}$ tel que $H \subset \mathbb{U}_{p^{n_0}}$.

Anneaux

- 5CS Exercice 15 Montrer que l'ensemble des inversibles d'un anneau forme un groupe.
- JTL Exercice 16 \slash Entiers de Gauss On considère $\mathbb{Z}[i] = \{a+bi, a, b \in \mathbb{Z}\} \subset \mathbb{C}$.
 - 1. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} .
 - 2. Montrer que $\mathbb{Z}[i]^{\times} = \mathbb{Z}[i] \cap \mathbb{U}$, où $\mathbb{Z}[i]^{\times}$ est l'ensemble des éléments inversibles de $\mathbb{Z}[i]$.
- HZN Exercice 17 \mathcal{I} Soit $(A, +, \times)$ un anneau, et $x, y \in A$ deux éléments nilpotents qui commutent.
 - 1. Montrer que le produit xy est nilpotent.

- 2. Montrer que x + y est nilpotent.
- **ETL Exercice 18** Pour $a \in \mathbb{Q}_+$, on note $\mathbb{Q}(\sqrt{a}) = \{x + y\sqrt{a}, x, y \in \mathbb{Q}\}.$
 - 1. Montrer que $\mathbb{Q}(\sqrt{a})$ est un sous-anneau de \mathbb{R} , et un sous-corps si $\sqrt{a} \notin \mathbb{Q}$.
 - 2. Si $\sqrt{a} \notin \mathbb{Q}$, expliciter un isomorphisme d'anneaux de $\mathbb{Q}(\sqrt{a})$ dans lui-même non trivial.
 - 3. Montrer que $\mathbb{Q}(\sqrt{2})$ n'est pas isomorphe à $\mathbb{Q}(\sqrt{3})$.
- XTT Exercice 19 \clubsuit Inversion de Möbius On munit $\mathcal{F}(\mathbb{N}^*,\mathbb{C})$ de l'addition usuelle des fonctions et du produit $f\star g\colon n\mapsto \sum\limits_{d\mid n}f(d)g(\frac{n}{d}).$
 - 1. Montrer que cela en fait un anneau commutatif.

Ind : La partie la plus subtile est l'associativité.

- 2. En caractériser les éléments inversibles.
- 3. Soit μ la fonction associant 0 aux multiples de carrés et $(-1)^r$ à tout entier qui s'écrit $p_1 \dots p_r$, où les p_i sont premiers distincts. Calculer $\mu \star (n \mapsto 1)$ et en déduire que si $\forall n \in \mathbb{N}^*$, $f(n) = \sum_{d \mid n} g(d)$, alors $\forall n \in \mathbb{N}^*$, $g(n) = \sum_{d \mid n} \mu(\frac{n}{d}) f(d)$.

Morphismes

ADS Exercice 20 🎜

- 1. Soient (G_1, \times_1) , (G_2, \times_2) et (G_3, \times_3) trois groupes et $\varphi_1 \colon G_1 \to G_2$ et $\varphi_2 \colon G_2 \to G_3$ deux morphismes de groupes. Montrer que $\varphi_2 \circ \varphi_1$ est un morphisme de groupes.
- 2. Soit $\varphi \colon G \to G'$ un isomorphisme de groupes. Montrer que φ^{-1} est un isomorphisme de groupes.
- **92B Exercice 21** Soit (G_1, \times_1) , (G_2, \times_2) deux groupes, dont on note e_1 et e_2 les éléments neutres. Soit $f: G_1 \to G_2$ un morphisme de groupes.
 - 1. Montrer que si $H_2 \subset G_2$ est un sous-groupe de G_2 , $f^{-1}(H_2)$ est un sous-groupe de G_1 .
 - 2. Montrer que si $H_1 \subset G_1$ est un sous-groupe de G_1 , $f(H_1)$ est un sous-groupe de G_2 .
- FDS Exercice 22 [ORAL MINES]
 - 1. Montrer que les groupes $(\mathbb{Z}, +)$ et $(\mathbb{Q}, +)$ ne sont pas isomorphes.
 - 2. \bigstar Montrer que les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}^*, \times) ne sont pas isomorphes.

Sous-groupes de \mathbb{R}

- **P61 Exercice 23** Montrer que $\{2^a3^b, a, b \in \mathbb{Z}\}$ est dense dans \mathbb{R}_+ .
- **IG5 Exercice 24** \bigstar Soit $\theta \in \mathbb{R}$. Montrer que $\{e^{in\theta}, n \in \mathbb{N}\}$ est soit fini, soit dense dans \mathbb{U} .

Indication: Introduire un certain sous-groupe de \mathbb{R} , engendré par θ et 2π .

- **BQ8 Exercice 25** \bigstar Soit $A \subset \mathbb{R}_+$ stable par addition. Montrer l'alternative
 - (i) $\exists a \geq 0, A \subset a \mathbb{N}$.
 - (ii) $\forall \varepsilon > 0, \exists M > 0, \forall x \ge M, A \cap [x \varepsilon, x + \varepsilon] \ne \emptyset.$